<em>Сторона описанного правильного треугольника на √6 больше стороны правильного четырёхугольника, вписанного в ту же окружность. <u>Найти сторону треугольника.</u></em>
Правильный четырехугольник - квадрат, и диаметром окружности, в которую он вписан, является его диагональ.
Обозначим вписанный квадрат КОМН
Пусть его стороны=а.
Тогда диаметр РН описанной вокруг него окружности равен а√2,
радиус <em>ОН</em>=а√2):2=a/√2
Стороны описанного треугольника АВС=а+√6
Радиус ОН вписанной в него окружности =ВН/3
ВН=АВ*sin 60º=√3*(а+√6):2
<em>OH</em>=√3*(а+√6):6
Приравняем оба значения ОН:
a/√2=√3*(а+√6):6 из чего следует
а=(а+√6):√6⇒
a=√6:(√6-1)
АВ=[√6:(√6-1)]+√6
<span>АВ=(√6+6-√6):(√6-1)=6:(√6-1)</span>
АК:КС=1:5, следовательно КС=5АК
АК=х, КС=5х
S(ABC)=AC*h/2=(x+5x)*h/2=6x*h/2
S(ABC)=36 (см кв)-по условию
6х*h/2=36
3x*h=36
x*h=12
S(KBC)=KC*h/2=(5x)*h/2=5*(x*h)/2=5*12/2=60/2=30(см кв)
Ответ: 30 см кв
1 32
2 192
3 253,5
4 264
5 64
6 214,5
7 45
8-
<span>треугольник АВС угол АВ=7 В=60 градусов угол С =45 градусов. найти ВС, АС, угол А </span>
<span>угол A =180-(60+45)=75</span>