1. MK=NK+MN MK=18+15 MK=33 см 2 способ MK=NK-MN MK=18-15 MK=3 см
1) Рассмотрим треугольник. Где один катет -высота, другой - часть большего основания и угол против второго катета = 30°. Находим что второй катет равен 0.5м. Отсюда находим чему равно меньшее основание.
Углы при основаниях равнобедренной трапеции равны.
сумма двух углов, прилежащих к боковой стороне = 180°
180°-55°=125°
Ответ: больший угол=125°
№5. А(-3;4) В(1;-8) М(х,у)
М((-3+1)\2;(4-8)\2) М(-1;-2)
АМ(-1+3;-2-4)
АМ(2;-6) ->A)
№8-А)
№10.а*ь=х1*х2+у1*у2
а*ь=6+6=12 ->А)
№12.соs<span>α=(х1*х2+у1*у2)\</span><span><span>√</span>(х1вквадрате*у1вквадрате)*</span><span>√(х2вквадрате*у2вквадрате)=(-15-48)\</span>
<span>√(25+144)*</span><span>√9+16=-63\(13*5)=-63\65=>В)</span>
Нужно найти углы ВОА и ВОС.
Находим внутренний угол В треугольника АВС:
<B=180-78=102°
Это наибольший угол треугольника (на углы А и С приходится всего 180-102=78°). Против большего угла лежит большая сторона треугольника. Значит, искомые углы ВОА и ВОС.
Поскольку ВО - биссектриса, то угол ОВA равен:
<OBA= 102:2=51°
Зная внешний угол при вершине А, находим внутренний угол треугольника:
<A=180-150=30°
Зная, что сумма углов треугольника равна 180°, находим угол ВОА в треугольнике АВО:
<BOA=180-<OBA-<A=180-51-30=99°
<span><BOC=<AOC-<BOA=180-99=81</span>°