2.5х=9
х=9/2.5
х= 3.6 вот так вот))))
Ответ: 5^8*7^8>(5*7)^8=35^8.
3) Неправильно задана. Апофема пирамиды (гипотенуза) не может быть короче высоты (катета). Периметр P = 16 (ребро основания a = 4).
Если высота H = 9, то апофема
L = √(H^2 + (a/2)^2) = √(81 + 4) = √85, тогда
V = 1/3*a^2*H = 1/3*16*9 = 48
S(бок) = 4*1/2*a*L = 2*4*√85 = 8√85
Если же апофема L = 5, то высота
H = √(L^2 - (a/2)^2) = √(25 - 4) = √21, тогда
V = 1/3*a^2*H = 1/3*16*√21 = 16/3*√21
S(бок) = 4*1/2*a*L = 2*4*5 = 40
4) Проведем диагональное сечение, получим равнобочную трапецию.
Ее основания равны 8√2 и 4√2, боковая сторона равна 16, высота H.
Проведем две высоты из верхних углов на нижнее основание.
Они разделят основание на отрезки 2√2, 4√2 и 2√2.
H = √(16^2 - 4*2) = √(256 - 8) = √248
5) Отношение объемов 128 : 96 = 4 : 3.
Значит, отношение ребер основания и высот равно кор.куб(4) : кор.куб(3)
А отношение площадей поверхностей равно кор.куб(16) : кор.куб(9).
Y - 14x^2 + y
__________ = -2x
7xy
Производная функции y'=20*1-5*x⁴/2=20-5*x⁴/2. Решая уравнение 20-5*x⁴/2=0, находим x⁴=8, откуда x²=√8=2*√2 либо x²=-√8=-2*√2. Однако так как квадрат любого действительного числа есть число положительное, то последнему уравнению не удовлетворяет ни одно действительное число. решая уравнение x²=2*√2=2^(3/2), находим x1=2^(3/4) и x2=-2^(3/4). Однако промежутку [1;9] принадлежит лишь значение 2^(3/4). Пусть x<2^(3/4) - например, пусть x=1. Тогда y'(1)=20-5/2>0, так что на интервале [1;2^(3/4)) функция возрастает. Пусть x>2^(3/4) - например, пусть x=2. Тогда y'(2)=20-5*16/2<0, так что на интервале (2^(3/4);9] функция убывает. Значит, точка x=2^(3/4) является точкой максимума, причём y(2^(3/4))≈24,4, а для нахождения минимума нужно сравнить значения функции на концах интервала [1;9].
y(1)=20-0,5-2,5=17, y(9)=180-9⁵/2-2,5=-29347<17, так что точка x=9 является точкой минимума, который равен y(9)=--29347.
Ответ: -29347.