Сперва умножение: 3×8 = 24 и плюс 2(1+1) будет 26
1. Найдём точку экстремумаF'(x) = 1 - e^(-x)=0то есть х=0. эта точка входит в интервал [-1;2], поэтому участвует в дальнейшем.2. Найдём значения функции на концах интервала и в точке экстремума.х=-1, F=-1+e^(1) = e-1. (1,71828)x=0, F=0+e^0 = 1.x=2, F=2+e^(-2) = (2*e^2+1)/e^2. (2,14) <span>Вот и всё! Видно, что на отрезке [-1;2] функция имеет минимум, равный 1 при х=0 и максимум, равный (2 + e^(-2)) при х=2.</span>
8x+xy-9y=65
9x-8y=65
x-y=65-9+8
x-y=64;
8x+xy-9y=65
8*x-y*x-y*9
8*64*64*9=512*576=72000
2. (2^5)²*3^10/6^7 = 2^10*3^10/2^7*3^7 = 2^3*3^3= 6^3 (6 в третьей степени)=216.
3. Нулевая степень любого числа равна 1. (3/5)^3<1, (25/9)>1
4. a) 2^(x+2)*3^(x+5)/3^3=2^(x+2)*3^(x+2)=6^(x+2)=216. (x+2)=3 (так как 6^3=216). Отсюда х=1.
б). (2^5)*(х^15)*(2^4)*(x^8)=(2^9)*(x^23). (2^9)*(x^23)/2^8*x^20 =2*x3=54 или 2*x^3=2*3^3 Отсюда х=3.
5. (5х-1)^0=1. (нулевая степень) (3х+2)*2 -х-1=4. 6х+4-х-1=4. 5х=1. х=1/5=0,2.