<span>Если понравилось решение - нажимай "спасибо" и "лучший" (рядом с кнопкой "спасибо") :)</span>
Если из точки К плоскости β проведены две наклонные, наклонная КР=х см , а наклонная KD=(x+2) cm KO⊥β, то КО - это и есть расстояние от точки К до плоскости β. ΔКОD и ΔКОР - прямоугольные. Применяя теорему Пифагора получаем уравнение: х²-5²=(х+2)²-9²
х²-25=х²+4х+4-81
4х=52
х=13
наклонная КР=13 см , а наклонная KD=13+2=15 cм
КО²=13²-5²=169-25=144, КО=√144=12см
Из формул диагоналей квадрата и куба мы знаем, что они равны корню квадратному из суммы квадратов сторон. => сторона куба равна 6 см. В кубе ребра перпендикулярны граням, а перпендикуляр - это кратчайшее расстояние меду точкой вне плоскости и плоскостью. Тогда расстояние от вершины А куба до противоположных этой вершине граней А1В1С1D1, ВВ1С1С и СС1D1D равно ребру куба, то есть = 6, а до граней АВСD, AA1B1B, AA1D1D равно 0, так как вершина А лежит в плоскостях этих граней.
cosB = корень (1-sinB в квадрате) = корень (1-0,64)=0,6
Углы при основании равны,отсюда-
45+45+90-сумма углов при основании
угол при вершине равен 180-90+90