Объяснение:
решение:если х=0, так как на ноль делить нельзя)))
Значения 5 и 7 на период не влияют. Период для sin(12*x) равен 2*π/12=π/6 радиан.
Ответ: <span>π/6 радиан.</span>
Решение:
log 0,6 (6x-x^2) > log 0,6 (-8-x)
6x - x^2 > -8 -x
x^2 - 7x - 8 > 0
x1 = 8
x2 - 1
(x-8)(x+1) > 0
Неравенство - самостоятельно.
РЕШЕНИЕ
-30+40х-51=35х-21
40х-35х-30-51+21=0
5х-60=0
х=60:5
х=12
ответ: 12
{5x₁-19x₂-x₃=26
{2x₁-5x₂-x₃=6
{8x₁-31x₂-4x₃=35
a)метод Крамера.
Находим главный определитель:
Находим D₁(в главный определитель вместо 1 столбца подставляем свободные коэффициенты)
Находим D₂:
Находим D₃:
Рассчитаем x₁, x₂, x₃:
в)Метод Гауса.
Запишем систему неравенств в виде матрицы, и приведём её к ступенчатому виду, при помощи элементарных преобразований.
Получаем такую систему:
{x₁-9x₂+x₃=14
{13x₂-3x₃=-22
{-33/13*x₃=-99/13
Эта система легко решается.
{x₃=3
{x₂=-1
{x₁=2
б) Матричный метод.<span>
Запишем
систему в матричной форме.
A·X=b
Тогда
решением будет:
X=A⁻¹·b</span><span>
Найдём A⁻¹ по формуле:</span><span>
Где
транспонированная
матрица алгебраических дополнений соответствующих элементов матрицы A
Найдём |A|:
</span><span><span><span><span /></span></span><span><span><span><span><span><span><span><span><span><span><span><span><span><span /></span></span></span></span></span></span></span></span></span></span></span><span /></span></span></span>.
<span>
Найдём
.
Для этого посчитаем все алгебраические дополнения:
<span>
</span></span>
Запишем алгебраические дополнения в виде матрицы:
Транспонируем эту матрицу:
Найдём A⁻¹(в матрицу пока что занесём только минус):
Найдём решения системы: