1+cosa-2sina/2cosa/2=2cos^2a/2-2sina/2cosa/2=2cosa/2(cosa/2-sina/2)=
=2cosa/2(cosa/2-cos(п/2-a/2))=4cosa/2sinП/4sin(П/4-a/2)=2√2cosa/2sin(П/4-a/2)
sin3a(cosa-cos3a)=sin3acosa-1/2sin6a=1/2sin4a+1/2sin2a-1/2sin6a=1/2(sin2a+sin4a-sin6a)
1-cos(α)=2sin^2(α/2)
sin(α/2) = +-sqrt((1-cosα)/2)
sin(α/2) = +-sqrt((1+0,28)/2)=+-sqrt(1,28/2)=+-sqrt(0,64)=+-0,8
π/2<α<π => π/4<α/2<π/2 => sqrt(2)/2 < sin(α/2) <1 => sin(α/2)=0,8