т.к АЕ=ЕС, значит треугольник АЕС-равнобедр, отсюда следует уголЕСА=углу ЕАС=37 градусов (углы при основании равны)
т.к. АЕ-биссектриса, то угол ЕАС= углу ДАЕ=37 градусов
т.к. ДА=ДЕ, следует треугольник АДЕ-равнобедренный, значит угол ДАЕ= углу АЕД=37 градусов(углы при основании равны)
т.к сумма углов треугольника равна 180 градусов, следует угол АДЕ=180 градусов-( 37 градусов+37 градусов)= 106 градусов
угол ВДЕ= 180 градусов-106 градусов=74 градуса.
Ответ: угол ВДЕ=74 градуса
∠DME = ∠DNE = 90° - углы, опирающиеся на диаметр
ΔCMN подобен ΔСED по 2 пропорциональным сторонам и углу между ними: |cosα| = CN/CD = CM/CE = MN/DE
По теореме косинусов в ΔАВС: |cosα| = (а² + b² - c²)/2ab
MN/DE = (a² + b² - c²)/2ab ⇒ MN = c•(a² + b² - c²)/4ab
Можно найти угол смежный с углов в 140, он будет равен 40... Высота проходит в 90 градусов..
180-(90+40)=50 градусов.. Так как у равнобедренного углы при основании равны, то на них остается 180-(50+50)=80 градусов.. 80:2=40 градусов.. Угол а=40,в=100,с=40
Координаты вектора АВ {3; -3}, координаты вектора АС{-4; -4}
cos A = ( -4*3 + (-3)*(-4)) /( (√9+16) *( √9 +16)) =0 / 25 = 0
координаты вектора ВА { -3;3 }, координаты вектора ВС {-7, -1}
cos B = ( (-3) * (-7) + 3*(-1) ) / (√9 +9) *(√49 +1) = (21 -3) / √18 *√50 = 18/√900 = 3/5
координаты вектора СА {4,4 }, координаты вектора СВ {7;1 }
cos C = (4*7 + 4* 1) / (√16 +16)* (√49 +1) = 32 / √32* √50 = 32/40 = 4/5
Медиана к гипотенузе равна половине гипотенузы
(это радиус описанной окружности)))
угол ОСА=60 градусов
угол РСА=45 градусов