<em>Составим уравнение:</em>
<em>4х+1*300=750;</em>
<em>4х=450;</em>
<em>х=112,5 гр. - одна пачка печенья.</em>
1. Найдем производную данной функции:
у'(x) = (8cos x+4x)' = -8sin x +4
2. Найдем точки, в которых производная равна нулю
y'(x)=0 ⇒ -8sin x+4 =0
sin x = 1/2
x = π/6
3. Найдем значение функции на концах данного отрезка(0; π/2) и в точке х= π/6
у(0) = 8* cos 0 +4*0 = 8*1 =8
у(π/6) = 8*cos π/6 +4*π/6 = 4√3 +2π/3 ≈4*1.7 +2* 2.1 ≈ 11
y(π/2) = 8*cos π/2 +4*π/2 = 0+ 2π ≈ 6.28
Ответ: наименьшее значение в точке х= π/2
План действий такой:
1) ищем производную
2) приравниваем её к нулю и решаем уравнение
3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке
4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума.
Начали?
1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)²
2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0
-2х² - 4х -3 +х² = 0
-х² -4х -3 = 0
х² + 4х + 3 = 0
х1 = -1; х2 = -3
<span>3) </span><u>-∞ + -3 - -1 + +∞</u>
4) функция возрастает при х∈( -∞; -3)∨(-1; +∞)
функция убывает при х ∈(-3; -1)
х = -3 точка мак4симума
<span> х = -1 точка минимума.</span>