Дискриминант= 529=23 в квадрате
Х1= (-7+23)/10=1,6
Х2=( -7-23)/10= -3
Пусть гипотенуза прямоугольного треугольника равна х см, тогда первый катет этого треугольника равен (х - 6) см, а второй катет равен (х - 6) + 3 = х - 3 см. По условию задачи известно, что площадь данного треугольника (площадь прямоугольного треугольника равна половине произведения его катетов) равна 1/2 * (х - 6)(х - 3) см^2 или 54 см^2. Составим уравнение и решим его.
1/2 * (х - 6)(х - 3) = 54;
(х - 6)(х - 3) = 54 * 2;
х^2 - 3х - 6х + 18 = 108;
х^2 - 9х + 18 - 108 = 0;
х^2 - 9х - 90 = 0;
D = b^2 - 4ac;
D = (-9)^2 - 4 * 1 * (-90) = 81 + 360 = 441; √D = 21;
x = (-b ± √D)/(2a);
x1 = (9 + 21)/2 = 30/2 = 15 (см);
х2 = (9 - 21)/2 = -12/2 = -6 - длина не может быть отрицательной.
Ответ. 15 см.
Х^2(4-2)х+13=9х-2
х^2(4х^2-8х+13)=9х-2
4х^4-8х^3+13х^2=9х-2
х=1/2
-4х-9=6х
-4х-6х=9
-10х=9
х=-0,9