V=S(осн)*h=a²h
a=5м, h=6м
V=5²*6=25*6=150(м³) - объём призмы
Ответ: 150 м³
Площадь основания равна S=пR²=п*4²=16п
площадь боковой поверхности S=пRl
Образующая конуса с высотой и радиусом основания образуют прямоугольный треугольник с углом 60°. В прям-ом тр-ке катет, противолежащий углу 30°, равен половине гипотенузы. Значит радиус основания равен половине образующей. Т.е. образующая равна 8 см. Получим, что площадь боковой поверхности равна S=п*4*8=32п
Площадь полной поверхности конуса равна S=16п+32п=48п
Объем конуса равен V=1/3пR²H
Высоту найдем по теореме Пифагора
H=√l²-R²=√8²-4²=√64-16=√48=4√3
V=1/3*п*4²*4√3=64√3/3п
Основание пирамиды (это равносторонний треугольник АВС) вписано в окружность радиуса r с центром О₁:r = a/(2*cos30°) = 6/(2*(√3/2)) = 6/√3 = 2√3.Высота пирамиды SО₁ равна H:Н = (√(AS² - (AО₁)²) = √(4² - (2√3)²) = √(16 -12) = √4 = 2.Теперь рассмотрим осевое сечение шара радиусом R и пирамиды:R² = r² + (R-H)² = r² + R² - 2RH + H².После сокращения на R² получаем:R = (r² + H²)/2H = ((2√3)² + 2²)/(2*2) = (12+4)/4 = 4.
А) углы А и D равны по условию, значит D = 62. Тк по условию АD || BC, сумма углов С и D равна 180 (односторонние углы при параллельных прямых и секущей CD. Неизвестный угол = 180 - 62 = 118
б) Тк BF = CF, углы С и В равны. Тк ВС || AD, углы D и FCB равны как соответственные. Неизвестный угол = 70
в) Треугольник ОDА равнобедренный, значит углы А и D равны 65. Углы ВСО и DАО равны как накрест-лежащие при параллельных прямых CB и AD и секущей CA. Неизвестный угол = 65
Дано: AB=BC=CD=AD (ABCD _ромб) , ∠A =30° ;
∠SEO =∠SFO=∠SMO=∠SNO = α =60°,SO=3√3.
E∈[AB] , F∈[BC] , M ∈[AB] ,N ∈[CD] .
-------
V -?
V =(1/3)*Sосн *H =(1/3)*Sосн *3√3 = √3*Sосн.
Пусть основания высоты пирамиды точка O:
* * * SO⊥ (ABCD), O ∈ (ABCD). * * *
<span>Если все двугранные углы при ребрах основания составляют равные
углы (как в данном примере </span>α=60°) ,то высота пирамиды проходит через центр окружности <span>вписанной в основании (здесь ромб ).
</span>[[ Прямоугольные треугольники SEO , SFO,SMO и SNO равны по общим катетом SO и острым углам ∠SEO =∠SFO=∠SMO=∠SNO.
⇒EO =FO=MO=NO =r и SE ,SF, SM, SN равные апофемы .]]
EF⊥ AD ; MN ⊥BC<span>
* * *
Рассмотрим </span>ΔESF: треугольник равносторонний ∠SEO =∠SFO=60°.
SO =(a*√3)/2= (EF*√3)/2.
3√3 =(EF*√3)/2⇒ EF = 6 . Проведем BH ⊥AD.Ясно BH =EF =6.
Из ΔABH: BH =AB/2 (катет против угла ∠A =30°) ⇒<span>AB=2BH.
</span>Sосн =AD*BH =AB*BH =2BH*BH =2BH² =2*6² =72<span>.
</span>* * * или Sосн =AB*AD*sin∠A =AB²*<span>sin∠A * * *</span>
V =√3*Sосн =72√3.