<em>р</em><em>е</em><em>ш</em><em>е</em><em>н</em><em>и</em><em>е</em><em /><em>п</em><em>р</em><em>и</em><em>л</em><em>о</em><em>ж</em><em>е</em><em>н</em><em>о</em>
---------------------------------------
Если вам дано простое выражение, в котором присутствует лишь одна тригонометрическая функция (sin, cos, tg, ctg, sec, cosec), причем угол внутри функции не умножен на какое-либо число, а она сама не возведена в какую-либо степень – воспользуйтесь определением. Для выражений, содержащих sin, cos, sec, cosec смело ставьте период 2П, а если в уравнении есть tg, ctg – то П. Например, для функции у=2 sinх+5 период будет равен 2П.
Если угол х под знаком тригонометрической функции умножен на какое-либо число, то, чтобы найти период данной функции, разделите стандартный период на это число. Например, вам дана функция у= sin 5х. Стандартный период для синуса – 2П, разделив его на 5, вы получите 2П/5 – это и есть искомый период данного выражения.
Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для четной степени уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите внимание, функции tg, ctg в любой степени периодичны П.
Если вам дано уравнение, содержащее произведение или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих периодов. Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.
<span> Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению. Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, равно 2П, это и будет ответ задачи.</span>
Ответ: 1) Функция определена при x≠3*π*n+3*π/2; 2) T=3*π.
Объяснение:
1) Так как tg(x/3)=sin(x/3)/cos(x/3), и при этом числитель и знаменатель одновременно в 0 не обращаются, то функция y=tg(x/3) определена для всех значений x, кроме таких, которые обращают знаменатель в 0. решая уравнение cos(x/3)=0, находим x/3=π*(2*n+1)/2=π*n+π/2, где n∈Z. отсюда x=3*π*n+3*π/2, где n∈Z.
2) Если функция f(x) имеет период T, то функция f(k*x) имеет период T1=1//k/. В данном случае f(x)=tg(x), T=π, k=/k/=1/3. Отсюда T1=T/(1/3)=π/(1/3)=3*π.
X²-y²+14y-49=x²-(y²-14y+49)=x²-(y²-2*y*7+7²)=x²-(y-7)²=(x+(y-7))(x-(y-7))=
=(x+y-7)(x-y+7)
Ответ: Другой ответ.
Другие варианты не подходят.