Для решения этого задания есть несколько вариантов
В данном решении принят метод построения истинной величины заданных объектов.
Точку В и отрезок прямой m объединяем в треугольник для получения плоскости.
Находим истинные размеры треугольника в образованной им плоскости, используя способ замены плоскостей проекций.
Уже в плоскости треугольника обычным способом находим симметричную точку А. Методом возврата находим проекции точки в плоскости х(1,2).
В приложениях дан образец такого способа и решение данной задачи.
48:6=8-сторона первого
8×2=16 - сторона второго ш.у.
Прямой угол меньше тупого угла. Поэтому <em>высота<u>тупоугольного треугольника</u>, проведенная из вершины<u> острого</u> угла, всегда расположена вне самого треугольника и <u>пересекает не саму сторону</u>, к которой проведена, <u>а её продолжение</u>. </em>Об этом <em>важно</em> помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Из суммы углов треугольника
<em>∠BFA</em>=180°-∠BAF-∠ABF=180°-17°-112°=<em>51°</em>
<em>Сумма острых углов прямоугольного треугольника 90° </em>⇒
<em>∠НАF</em>=90°-51°=<em>39°</em>
За теоремою Пифагора
(1х)² + (4х)² = (3√17)²
х² + 16х² = 9*17
17х² = 9*17
х² = 9
х =3
1х = 3
4х = 12
Відповідь: катети дорівнюють 3 та 12
90°, т.к. диагонали ромба - перпендикулярны друг другу