Дано: ΔАВС - равнобедренный, АС - основание, ∠А=47°. Найти ∠В, ∠С.
Решение:
Поскольку треугольник АВС - равнобедренный, углы при основании равны; ∠А=∠С=47°.
Сумма углов треугольника составляет 180°, поэтому
∠В=180-(47+47)=86°.
Ответ: 47°, 47°, 86°
1. ΔАВО₁: ∠О₁ = 90°, ∠А = 30°, ⇒ АВ = 2ВО₁ = 6 дм
Sabcd = АВ · ВО₂ = 6 · 8 = 48 дм²
2. Sabo = 1/2 AB·OO₁ = 1/2 OB·AO₂
AO₂ = AB·OO₁/OB = 14 · 18/21 = 12 см
3.Проведем вторую высоту СС₁. Тогда C₁D = 6,6 мм, а В₁С₁ = В₁D - С₁D = 4,8 мм. И ВС = В₁С₁ = 4,8 мм (ΔАВВ₁ = ΔDCC₁ по гипотенузе и острому углу, а ВВ₁С₁С - прямоугольник)
∠DCB = 135° ⇒ ∠CDA = ∠BAD = 180° - 135° = 45° (сумма углов, прилежащих к боковой стороне трапеции 180°)
⇒ΔАВВ₁ прямоугольный равнобедренный, тогда ВВ₁ = АВ₁ = 6,6 мм
Sabcd = (AD + BC)/2 · BB₁ = (18 + 4,8)/2 · 6,6 = 75,24 мм²
4. KLMO прямоугольная трапеция с основаниями KL = 14 cм и МО = 14-12 = 2 см, высотой LM = 14 см
Sklmo = (KL + MO)/2 · LM = 16/2 · 14 = 8 · 14 = 112 см²
5. Сторона ромба Р/4 = 100/4 = 25 см.
Рhpc = HP + PC + HC
HC = 64 - 25 - 25 = 14 см
Рpcl = PC + CL + PL
PL = 98 - 25 - 25 = 48 см
Spclh = HC · PL/2 = 14·48/2 = 336 см²
1) По теореме Пифагора находим катеты АВ = ВС = х
АВ² + ВС² = АС²
х² + х² = 28²
2х² = 784
х² = 784 : 2
х² = 392
х = √392
Катет АВ = √392
2) Расстояние от точки В до АС это перпендикуляр ВК к стороне АС (ВК является и высотой и медианой для ΔАВС, т.к он равнобедренный)
Получился прямоугольный ΔАВК, у него гипотенуза АВ = √392 ;
катет АК = АС : 2 = 28 : 2 = 14
По теореме Пифагора находим искомый катет ВК
АВ² = ВК² + АК²
ВК² = АВ² - АК²
ВК² = 392 - 196
ВК² = 196
ВК = √196 = 14
Ответ: ВК = 14
<u>2 способ </u>
Так как Δ АВС прямоугольный и равнобедренный, то углы его <А = <С = 45° , а высота ВК - расстояние от точки В до АС это перпендикуляр ВК к стороне АС (ВК является и высотой и медианой)
АК = АС : 2 = 28 :2 = 14
ΔАВК тоже прямоугольный и равнобедренный, то углы его <А = <АВК = 45° , значит, АК = ВК = 14
CT║AM║BP как перпендикуляры к одной прямой.
Следовательно, АМТС - прямоугольная трапеция с основаниями АМ и СТ.
Так как В - середина боковой стороны трапеции, и ВР параллельна основаниям трапеции, ВР - средняя линия.
ВР = (АМ + СР) / 2 = (18 + 34) / 2 = 52/2 = 26 см
УголADC=уголCFA, угол DAC = уголFCA => уголDCA=уголFAC
AC-общая
Следовательно треугDAC=треугFCA (2 угла и сторона между ними)
Поэтому DC=AF