Рассмотрим треугольники Abd и Bdc
Ed-высота, значит Ed перпендикулярно Ac.
Bd- общая
Ad=Dc- по условию
Треугольник Abd=Bdc (по равенству двух катетов)
S(ABHE)=1/2*(AB+EH)*h
h=4
EH=(AB*2)-FK=17 (из средней линии трапеции)
S(ABHE)=1/2(13+17)*4=60
Дано: BO = DO
∠ABC = 45°
∠BCD = 55°
∠AOC = 100°
-----------------------
1) Найти ∠D
2) Доказать ΔABO = ΔCDO
1) Угол АОС - внешний угол при вершине О для треугольника ОDС. Он равен сумме двух внутренних углов BCD и D треугольника ODC, не смежных с ним:
∠АОС = ∠BСD + ∠D → ∠D = ∠AOC - ∠BCD = 100 - 55 = 45
Ответ: 45°
2) BO = DO (по условию)
∠D = ∠ABC = 45° (получено выше)
∠AOB = ∠COD (вертикальные углы)
Следовательно, ΔАВО = Δ CDO по 2-му признаку равенства треугольников, что и требовалось доказать
1) х-2у+1=0; 2)2х+у+1=0; 3)2х-у-1=0; 4)х-2у-1=0