ОА перпендикулярно АВ, т.к. АВ - касательная к окружности, О - центр окружности, а отрезок из центра окружности к точки касания окружности с касательной перпендикулярен касательной. Значит треугольник АОВ - прямоугольный. АВ=24, ОА=7(т.к. ОА - радиус окружности), т.к. точка А принадлежит окружности, О - центр окружности. Значит ОВ^2=АО^2+AB^2 по теореме Пифагора. То есть ОВ^2=7^2+24^2=49+576=625. Значит ОВ^2=625. ОВ=корню из 625, равно 25.<span>Ответ: ОВ=25.</span>
Δ EDP прямоугольный , в нём угол DEP = 30 (EP - биссектриса)
DP = x, EP = 2x
x + 2x = 12
3x = 12
x = 4 ( DP)
EP = 8
Ищем по т. Пифагора ED
ED² = 8² - 4² = 64 - 16 = 48
ED = √48 = 4√3
ΔEDF В нём угол F = 30 ⇒ED = 4√3 ·2 = 8·√3
По т. Пифагора ищем DF
DF² = (8√3)² - (4√3)² = 144
DF = 12
FP = 12 - 8 = 4
Ответ:
Так как треугольник равносторонний то его стороны равны значит надо 6 умножить на количество сторон то есть на 3 выходит 6*3=18