Решение:
1) Проведем высоты BH и CM к большему основанию.
2) Треугольник ABH - равнобедренный, так как угол A = углу ABH = 45 градусов, следовательно AH = BH = BC
3) Аналогично треугольник MCD - равнобедренный, следовательно MD = CM = BC
4) AD = AH + HM + MD, а AH = HM = MD = BC, следовательно AD = 3BC, следовательно BC =12/3=4
5) Площадь ABCD = 1/2(BC + AD) * BH= 8 * 4 = 32
Рассмотрим треугольники ABM и ACM
Прямоугольные треугольники равны по общей гипотенузе AM ипо равным катетам AB=AC, тогда ABM=ACM
MB и MC катеты данных треугольников
В равных треугольниках равны и соответствующие стороны
MB=MC
Может в условии был <span>параллелепипед...а то прямоугольный параллелограмм это бред...да и найти объем плоской фигуры тоже нельзя...</span>
Если в<span>се боковые грани пирамиды наклонены к основанию под одним углом, то их высоты проецируются на основание в радиусы r вписанной в основание окружности.
Высота основания h = </span>√(15² - 12²) = √(225 - 144) = √81 = 9 см.
<span>Площадь основания So = (1/2)*24*9 = 108 см</span>².<span>
Периметр основания Р = 2*15+24 = 54 см.
Полупериметр р = 54/2 = 27 см.
Тогда r = S/p = 108/27 = 4 см.
Апофема А = </span>√(r² + H²) = √(4² + 2²) = √(16 + 4) = √20 = 2√5 см.<span>
</span>