АВ/СВ=СВ/DB ( треугольники АВС и АВD подобны по трём углам). Отсюда: (АD + 5):10=10:5. AD+5=20, AD=15.
2.
По теореме Пифагора
ВД = √(АВ²+АД²)=√(6²+8²) = √100 = 10
ВД=АС по свойству диагоналей прямоугольника
АО=АС/2=ВД/2 = 10/2 = 5 - по свойству диагоналей прямоугольника
По теореме Пифагора
АМ = √(АО²+ОМ²) = √(5²+10²) = √125 = 5√5 (см)
3. ... перпендикулярна всем прямым лежащим в этой плоскости.
4.
АС = АМ/cos 45 = 5*2/√2 =10/√2 = 5√2 (см)
5.
а) - верно, б) - верно, в) - неверно
1)
Радиус вписанной в прямоугольный треугольник окружности находят по формуле
<span>r=(а+в-с):2,
</span> где а и в - катеты, с - гипотенуза треугольника.
По условию задачи радиус вписанного круга равен (а-в):2.
Вставим это значение радиуса в формулу:(а-в):2=(а+в-с):2
Домножим обе части уравнения на 2
а-в=а+в-с
2в=с
в=с:2
Катет в вдвое меньше гипотенузы. Следовательно, он противолежит углу 30ᵒ
--------------------------
2)
Радиус вписанной в равносторонний треугольник окружности равен одной трети высоты этого треугольника, а диаметр -двум третям.
Высоту правильного треугольника находят по формуле
h=(a√3):2, где а - сторона треугольника.
h=(18√3):2
КН ( диаметр окружности) = две трети высоты ВН = 2(18√3):2):3=6√3
Окружность оказалось<u> вписанной в трапецию AMNB</u>, высота которой равна диаметру окружности, т.е.<span> 6√3
</span>Опустив из вершины угла М высоту МН1 к основанию АВ, получим <u>прямоугольный треугольник АМН1</u> с противолежащим высоте углом А= 60ᵒ.
АМ отсюда равна К1Н1:sin60ᵒ =12 см
АН₁ =АК₁*sin30ᵒ=6 см
СН₂=АН₁=6см
Н₁Н₂=МN =6 см
Р трапеции AMNB=12*2+18+6=48 см
Каждая сторона треугольника должна быть меньше суммы двух других сторон. Это неравенство достаточно проверить для большей стороны, так как две другие стороны уже меньше нее.
а) 12 < 6 + 5
12 < 11 - неверно, треугольник с такими сторонами не существует.
б) 11 < 6 + 5
11 < 11 - неверно, треугольник с такими сторонами не существует.