2-2cos^2x-2cosx+1=3-2cos^2x-2cosx=0
(воспользовался основным тригонометрчисеким тождеством и из синуса получил косинус)
замена
t = cosx
3-t^2-2t=0
t^2+2t-3=0
t1=-3
t2=1
Обратная замена
cosx=-3
это посторонний корень так ккак значение косинуса от -1 до 1
cosx=1 ( решаем простейшее уравнение)
x= 2п*n ( где n кол-во оборотов а п =3,14 радиан)
так как косинус равняется 1 в нуле и через каждый оборот ( 2п - полный оборот круга)
Ответ: x=2п*n
-9х2+8х+1
x12=(-8+-корень(64+36))/-18=(-8+-10)/-18=1 -1/9
-9(x-1)(x+1/9)
-4х2+3х+1
x12=(-3+-корень(9+16))/-8=(-3+-5)/-8=1 -1/4
-4(x-1)(x+1/4)
-3х2-2х+5
x12=(2+-корень(4+60))/-6=(2+-8)/-6=1 -5/3
-3(x-1)(x+5/3)
<span> 5х2+2х-3
x12=(-2+-корень(4+60))/10=(-2+-8)/10=-1 3/5
5(x+1)(x-3/5)</span>
при a=-2 не имеет смысла, потому-что в знаменателе будет 0, а на 0 делить нельзя =)
Ответ: S=1,125 кв. ед.
Объяснение:
4.
y=x²-3x+4 y=4-x² S=?
x²-3x+4=4-x²
2x²-3x=0
x*(2x-3)=0
x₁=0 x=1,5
S=₀¹'⁵ (4-x₂-(x²-3x+4))dx=₀¹'⁵(3x-2x²)dx=(3/2)*x²-(2/3)*x³ ₀|¹'⁵=
=(3/2)*1,5²-(2/3)*1,5³=(3/2)*(1¹/₂)²-(2/3)*(1¹/₂)³=(3/2)*(3/2)²-(2/3)*(3/2)³=
=(3/2)³-(3/2)²=(3/2)²*(3/2-1)=(9/4)*(1/2)=9/8=1,125.
5.
В высшей точке скорость равна 0. ⇒
39,2-9,8*t=0
9,8*t=39,2 |÷9,8
t=4 (c).
v=39,2-9,8*t
s=₀∫⁴vdt=₀∫⁴(39,2-9,8*t)dt=39,2*t-9,8*t²/2 ₀|⁴=
=39,2*t-4,9*t² ₀|⁴=39,2*4-4,9*4²=156,8-78,4=78,4 (м).
Ответ: наибольшая высота поднятия тела 78,4 м.