6) дуга АВ =110°
Дуга ALB=360-110=250°
14)треугольник равно сторонний. АС=АВ=2.
r=2:2=1
Остальные задания не знаю как решить(
Дана пирамида ДАВС, АВ=ВС, r = 3 см, h = ВЕ = 8 см, Н = ДО = 4 см.
Так как о<span>снование высоты попадает в точку пересечения биссектрис этого треугольника, то оно совпадает с центром вписанной окружности.
Рассмотрим треугольник ВОК, где К - точка касания стороны АВ.
По Пифагору КВ = </span>√(8-3)² - 3²) = 4 см.<span>
</span>Тангенс половины угла В равен 3/4, а синус равен 3/5.
Находим половину стороны АС:
(1/2)АС = АЕ = 8*tg(B/2) = 8*(3/4) = 6 см.
Сторона АС = 2*6 = 12 см.
Сторона АВ = ВС = 6/(3/5) = 10 см.
Периметр основания Р = 2*10+12 = 32 см.
Высота h каждой грани равна:
h = √(r² + H²) = √(3² + 4²) = 5 см.
Площадь боковой поверхности пирамиды равна:
Sбок = (1/2)Рh = (1/2)*32*5 = 80 см².
1) для тр. АВС по т. Пифагора АС^2=АВ^2-ВС^2=13^2-5^2=144, АС=12(см).
2) АD=BD=x, DC=12-х.
Для тр. DCB по т. Пифагора
DС^2+BC^2=BD^2,
(12-x)^2+5^2=x^2,
144-24x+x^2+25=x^2,
24x=169,
x=169/24=7 1/24(см)-BD
Ответ: 7 1/24
Семь целых одна двадцать четвёртая.
S=(a*b)/2
пусть второй катет=x
16x/2=64
8x=64
x=64:8
x=8 sm
Решение.........................