3 боковых грани площадью 5+=*12=60 каждая, да ещё 2 основания, площадь каждого из которых равна 25/4 корней из 3. В сумме получается 180+12,5 корней из 3
Треугольник АВМ равнобедренный, следовательно в нём угол ВМА равен углу ВАМ. Угол ВМА равен углу МАД (накрестлежащие при параллельных прямых ВС и АД и секущей АМ) => угол ВАМ = углу МАД, а значит АМ биссектриса угла А. Что и требовалось доказать.
Если окружность касается еще какой-то стороны в точке N, и если обозначить
AN = y; BM = 8 = x; CM = r = 4; то
(r + x)^2 + (r + y)^2 = (x + y)^2;
или
r^2 + r*(x + y) = x*y;
откуда
y = r*(x + r)/(x - r) = 4*12/4 = 12;
Стороны треугольника ABC AB = 20; AC = 16; BC = 12; (это египетский треугольник, то есть подобный 3,4,5)
BO - биссектриса, то есть AK/CK = AB/BC; или AK/AC = AB/(AB+BC);
AK = 16*20/(20 + 12) = 10;
Если есть катеты, то есть и гипотенуза. с = √(а² + b²)
h = ab/c = ab/ √(а² + b²)
Сторона ромба равна 8, острый угол равен 30o. Найдите радиус вписанной окружности.
Решение
Диаметр вписанной окружности равен высоте ромба, а высота, опущенная из вершины на противоположную сторону, есть катет прямоугольного треугольника, лежащий против угла в 30o<span>. Следовательно, высота ромба равна 4, а искомый радиус равен 2. на эту задачу посмотри и сама реши</span>