Задача 1. Найдём АВ, т.к. гипотенуза АВС:
АС²+ВС²=АВ²
АВ=√АС²+ВС²
АВ=√4+9=√13
Ищем АД по той же схеме:
АД=√6²+(√13)²=√36+13=√49=7
Задача 2. Находим АС по АС=√АВ²-ВС²=√64-36=√28
АС у нас гипотенуза треугольника АСД, поэтому АД=√(√28)²-(√21)²=√28-21=√7
Кажись, вот так.
<span>Перечерти мой рисунок.
Далее рассматриваем тр.-ник
ECD.В нём EC=CD(следовательно треугольник равнобедренный) и проведён
диаметр EK.Нам нужно доказать,что он (EK) перпендикулярен CD.Для этого
строим FC и FD,опять равнобедренный треугольник FCD,где FC=FD.Из
равенства углов ECD=CDE и FCD=FDC получаем,что ECK=KDE.Выходит,что
треугольник ECF и EDF равны по двум сторонам и двум углам между ними.Из
этого следует,что угол CEK=DEK.
Теперь вернёмся к треугольнику ECD.В нём EK-биссектрисса,а значит и медиана.Отсюда следует,что CK=KD.Теорема доказана.</span>
Tg MON=MN/ON=5/10=1/2=0.5
Ответ:0,5
H=b*sin30=5√2*1/2=2.5<span>√2
BC=h/sin45=( 2.5</span>√2 ) / ( <span>√2/2)=5см</span>