Подробно (только о производной одного слагаемого)...
(1/(3-x)^2) ' = (3-x)^(-2)= {производная сложной функции}= -2 (3-x)^(-3)*(-1)= {где (-1)-это производная от (3-x)'}=2*(3-x)^(-3)...
Вот так. Если непонятно-пиши
1) f(x) = 2x^-1 - 8x^-1/2 +6x^-2/3 +2x +6x^5/2
f'(x) = -2x^-2 +4x^-3/2 -4x^ -5/3 +2 +15x^3/2 =
= -2/x² +4/√х³ - 4/∛х^5 + 2 +15√x³
f'(1) = -2 +4 -4 +2 +15 = 15
2) Ищем производную по формуле : (UV)'= U"V + UV'
f'(x) = (x² -2)' *√(x² +1) + (x² -2) * (√(x²+1)'=
=2x*√(x² + 1) + (x² -2)* 1/2√(х² +1) * 2х=
= ( 2x(2x² +1) +x(x² -2) )/√(x² +1) = 5x³/√(х²+1)
f'(1) = 5√2/2