Задачу можно решить с помощью чертежа (<u> графически).</u> См. рисунок.
По нему понятно, что описанный квадрат состоит из 4-х равных квадратов со стороной=а:2
Вписанный квадрат состоит из 4 прямоугольных треугольников, каждый из которых равен половине одного квадратика описанного квадрата.
Отсюда: Площадь квадрата вписанного в круг, меньше площади квадрата,описанного около этого круга, в 2 раза.
<u>2-й вариант решения.</u>
Пусть сторона вписанного квадрата будет а, а его диагональ - d
Тогда его площадь равна
S₁=a²
Сторона описанного квадрата равна диагонали d вписанного в эту же окружность квадрата и равна
d=а√2
Площадь этого квадрата
S₂ =d²=(а√2)=2а²
S₂:S₁=2а²:а²=2
Биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон. Это можно сделать многими способами, например, так.
Квадрат отличается от произвольного прямоугольника тем, что симметричен относительно диагоналей. То есть он переходит в себя при зеркальном отражении относительно прямой, проходящей через противоположные вершины.
Легко увидеть, что:
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон ИСХОДНОГО прямоугольника.
Поскольку ИСХОДНЫЙ прямоугольник переходит в себя при отражении относительно этих прямых, то и ПОЛУЧЕННЫЙ при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
То есть это квадрат.
Я напоминаю, что совпадение фигур при смещении, повороте или зеркальном отражении - это ОПРЕДЕЛЕНИЕ равенства. Самое первичное. Так сказать, наиглавнейшее. Поэтому это доказательство опирается только на определение равенства фигур и на свойства параллельных и секущей.
S(ABCD)=AD•MD=24•9=216
S(ABD)=216:2=108=1/2*24*15*sin(<ADB)
sin(<ADB)=108:(12*15)=9/15=3/5
cos(ADB)=√1-9/25=√16/25=4/5
по теорема косинуса
х^2=24^2+15^2-2*24*15*4/5=576+225-
576=225
х^2=225;х=15
1)Пусть MD = x. Зная, что каждый катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на эту гипотенузу, составим уравнение:
MK = √MP*x
MP*x = MK²
x = MK²/MP
x = 36/10 = 3.6
2) Тогда DP = MP-MD = 10-3.6 = 6.4
3)По свойству, высота, проведённая к гипотенузе, равна среднему пропорциональному отрезков, на которые делится гипотенуза этой высотой.
Значит,
KD = √3.6*6.4 = √23.04 = 4.8
S(MKD) = 1/2 * KD * MD = 0.5 * 4.8*3.6 = 8.64
S(KDP) = 0.5 * KD * DP = 0.5*4.8*6.4 = 15.36
4)S(MKD)/S(KDP) = 8.64/15.36 = 0.5625≈0.6
1) угол АВС опирается на ту же дугу что и угол АДС , а если углы рпираютя на общую дугу то они равны, угол АДС= 50
2) тут тоже самое углы опираются на общую дугу, следовательно угол АДС= 110