-4cos(a+270)-2,4(540-a)-0,6(a+360)=-4cos a-1080cos-1296-2,4a-0,6a-216=-4cos a-1080cos-3a-1512=-4cos(a+240)-3(a-54)=0-4cos=0,a1=-240,a2=54cos=0
Ответ:
1
Объяснение:
1 + cos(2α) - sin(2α) / cos(α) + cos(π/2+α) = 2cos(α)^2 - 2cos(α)sin(α) / cos(α) - cos(π-π/2-α) = 2cos(α) (cos(α)-sin(α))/cos(α) - cos(π/2 -α) = 2cos(α) (cos(α)-sin(α))/cos(α)-sin(α) =2cos(α) = 2cos(2π + π/3) = 2cos(π/3) =1
<span>1)4^(x+1)=64^(x-1)</span>
<span>нет решений</span>
<span>2)<span>2^(x+3)-2^(x+1)=12</span></span>
2^(х+3)-2^(х+1)=3*2^(х+1)
3*2^(х+1)=2^2*3
2^(х+3)-2^(х+1)-12=0
x=1
Ответ:
Объяснение:
1)
IACI²=17²-8²=289-64=225
IACI=15
sinα=8/17
cosα=IACI/17=15/17
tgα=8/IACI=8/15
sinβ=IACI/17=15/17
cosβ=8/17
tgβ=IACI/8=15/8
2)
IABI²=21²+20²=441-400=841
IABI=29
sinα=21/IABI=21/29
cosα=20/IABI=20/19
tgα=21/20
sinβ=20/IABI=20/29
cosβ=21/IABI=21/29
tgβ=20/21
3)
IABI²=1²+2²=1+4=5
IAB=√5
sinα=1/IABI=1/√5=√5/5
cosα=2/IABI=2/V5=2V5/5
tgα=1/2
sinβ=2/AB=2/√5=2√5/5
cosβ=1/AB=1/√5=√5/5
tgβ=2/1=2
4)
IBCI²=25²-24²=265-576=49
IBCI=7
sinα=IBCI/25=7/25
cosα=24/25
tgα=IBCI/24=7/24
sinβ=24/25
cosβ=IBCI/25=7/25
tgβ=24/IBCI=24/7