A(t)=cos(t/2)
v(t)=∫cos(t/2)dt+C=2sin(t/2)+C
v(<span>2π/3)=2sin(</span><span>2π/6)+C</span>=√3
2sin(π/3)+C=√3
2*√3/2+C=√3
C=0
v(t)=2sin(t/2)
x(t)=∫2sin(t/2)dt+C=-4cos(t/2)+C
x(2π/3)=-4cos(2π/6)+C=2
-4cos(π/3)+C=2
-4/2+C=2
-2+C=2
C=4
x(t)=-4cos(t/2)+4
X +y + x^2 + 2xy + y^2 - 2xy = 18;
xy(x+y) = 30;
(x+y) + (x+y)^2 - 2xy = 18;
xy(x+y) = 30;
m = x+y;
n = xy;
m^2 + m - 2n = 18;
m n = 30; n = 30 /m;
m^2 + m - 60/m = 18;
m^3 + m^2 - 18m - 60 = 0;
Методом подбора или по таблице Горнера определим делитель , равный 5. Разделим уголком выражение на 5 и получим
_m^3 + m^2 - 18m -60 : m - 5
m^3 - 5 m^2 m^2 +6m +12.
_6m^2 -18 m - 60
6m^2 -30m
_12 m - 60
12m - 60
0.
теперь наше выражение примет вид;
(m-5)(m^2 + 6m + 12) = 0;
m^2 + 6m + 12 =0; D <0 ; ⇒корней нет.
Остается один корень m = 5.
n = 30/ m = 6;
x+y = 5; x = 5- y;
xy = 6; y(5-y)= 6;
- y^2 + 5y - 6 = 0;
y^2 - 5y + 6 = 0;
y1 = 3; x1 = 5 - 3= 2;
y2= 2; x2 = 5 - 2 = 3.
Ответ (2; 3); (3;2)
Смещение вниз дает
=-2cosx+2
cмещение на 2п/3
=-2cos(x+2П/3)+2
Всего пакетов 25, значит вероятность будет равно 1/25
5x² + 10x ≥ 0
5x(x + 2) ≥ 0
x(x + 2) ≥ 0
+ - +
___________________________
- 2 0
x ∈ (- ∞ ; - 2]∪[0 , + ∞)
Наибольшее целое отрицательное - 2