Пусть скорость товарного поезда х км/ч, тогда скорость пассажирского поезда на х+20 км/ч.
360/х- это время за которое товарный поезд прошёл расстояние 360 км
360/(х+20)- это время за которое прошёл товарный поезд это же расстояние .
Так как пассажирский поезд прошёл это расстояние на 3 часа быстрее, то составляем уравнение:
360/х - 360/(х+20)=3
360/х - 360/(х+20) -3=0
Приводим к общему знаменателю :
(360*(х+20) -360х-3х(х+20))/х*(х+20)=0
( 360х + 7200 -360х - 3х^2-60х)/х*(х+20)=0 составим систему уравнений. Для этого приравняем числитель дроби к нулю:
-3х^2 -60х +7200, а знаменатель дроби не может равняться нулю( на ноль делить нельзя): х*(х+20)#( нет у меня символа неравно, обозначу его решеткой)0.
Решаем первое уравнение системы:
-3х^2-60х +7200=0
Разделим каждое слагаемое на -3
Х^2+20х-2400=0
Д= 20^2 - 4 * (-2400)= 400+9600=10000=100^2
Х1= (+60-100)/2= -40/2=-20 не удовлетворяет условию задачи, так как скорость не может быть отрицательная.
Х2=(+60+100)/2= 80 км/час скорость товарного поезда.
Теперь решаем второе уравнение системы: х*(х+20)#0
Х#0 и х+20#0
Х#-20
Найденный нами корень первого уравнения удовлетворяет условию системы. ( х=80), тогда х+20=80+20=100 км/ч скорость пассажирского поезда
a и b (м) - стороны прямоугольника (участка)
Заметим что если корень есть то он один, так как выражение слева является суммой произведений всюду возрастающих функций..
пусть 2x+1=a. 3x= b
a*(2+√[a^2+3))+b*(2+√(b^2+3))=0
при а= -b выражение слева равно нулю
2x+1= -3x. x= -1/5
Область определения -x²-5x+14>0
Умножим на (-1), при этом сменим знак на противоположный
x²+5x-14<0
Найдем корни уравнения x²+5x-14=0
x1+x2=-5
x1*x2=-14 ⇒x1=2, x2=-7
Решение на рисунке
Ответ: x∈(-7;2)