.....................................
Х - скорость первого
y - скорость второго.
весь путь 84*3=252 км
<span>Оба гонщика стартовали одновременно, а на финиш первый пришёл раньше второго на 28 минут
значит:
252/х+7/15=252/y (7/15 - это 28 минут если перевести в часы)
</span>известно, что пер<span>вый гонщик в первый раз обогнал второго на круг через 10 минут
10 мин = 1/6 часа
</span><span>т.к по условию 1 круг равен 3 км значит
скорость*время=путь
(1/6)х=(1/6)у+3 домножаем левую и правую часть на 6:
х=у+18
получаем уравнение
252/(у+18)+7/15=252/у разделим всё на 7 и умножим на 15у(у+18) - ОЗ-чтобы убрать дроби
после упрощения получил уравнение
</span>у^2+18y-9720=0<span>
у=90 -скорость второго гонщика
</span>
проверяем... 90+18=108 -скорость первого
3*84/90=2,8 часа (второй гонщик в пути) = 2,8*60=168 минут
<span>3*84/108=2 1/3 часа = 140 минут
</span>168-140=28 минут
У⁴ - 3у³ + 2у = у(у³ - 3у² +2)
Три корня:
x=-2.1; -1/7; 3.
3) Неправильно задана. Апофема пирамиды (гипотенуза) не может быть короче высоты (катета). Периметр P = 16 (ребро основания a = 4).
Если высота H = 9, то апофема
L = √(H^2 + (a/2)^2) = √(81 + 4) = √85, тогда
V = 1/3*a^2*H = 1/3*16*9 = 48
S(бок) = 4*1/2*a*L = 2*4*√85 = 8√85
Если же апофема L = 5, то высота
H = √(L^2 - (a/2)^2) = √(25 - 4) = √21, тогда
V = 1/3*a^2*H = 1/3*16*√21 = 16/3*√21
S(бок) = 4*1/2*a*L = 2*4*5 = 40
4) Проведем диагональное сечение, получим равнобочную трапецию.
Ее основания равны 8√2 и 4√2, боковая сторона равна 16, высота H.
Проведем две высоты из верхних углов на нижнее основание.
Они разделят основание на отрезки 2√2, 4√2 и 2√2.
H = √(16^2 - 4*2) = √(256 - 8) = √248
5) Отношение объемов 128 : 96 = 4 : 3.
Значит, отношение ребер основания и высот равно кор.куб(4) : кор.куб(3)
А отношение площадей поверхностей равно кор.куб(16) : кор.куб(9).