<span>( 2/3*6/5-0,08)*10=7,2
2/3*6/5=12/15=4/5=0,8
0,8-0,08=0,72
0,72*10=7,2
</span>
F(x) = x^2 + 6x;
первообразная:
F(x) = 1/3 * x^3 + 3x^2 + C;
F(2) = 1/3 * 8 + 3 * 4 + C;
В требовании указано: "Какую-нибудь первообразную функцию", мы же возьмём ту, которая даст нам более привлекательное отрицательное число, например: (1/3)*8 + 12 - 15;
С = - 15; (В первообразных функциях всегда добавляется какая-то константа, потому что производная от константы = 0, поэтому говоря про вервообразную функцию, мы всегда говорим об Колекции функций, с разным варированием этой константе, её всегда пишут буквой С).
Что бы найти результат, который бы удовлетворял нас выполним обычное уравнение:
F(2) = 1/3 * 8 + 3 * 4 - 15 = - 1/3
Вот эта функция и нам подходит, ты же можешь взять любое другое число, которое больше, но не меньше чем (-15), потому что указав число -14 мы получим 2/3, а нам не нужно положительный результат из требования...
<span>25х²-1-4+9х²-х-34х²=0
х=-5</span>