Если x <= -1, то неравенство заведомо удовлетворяется: левая часть неотрицательна, а правая неположительна.
Пусть теперь x > -1. Тогда обе части неравенства положительны, и неравенство можно возвести в квадрат (заодно заметим, что (|x|)^2 = x^2):
x^2 >= (x + 1)^2
x^2 >= x^2 + 2x + 1
2x + 1 <= 0
2x <= -1
x <= -1/2
Совместно с неравенством x > -1 получаем вторую часть решения: -1 < x <= -1/2
Собирая обе части решения вместе, получаем ответ: x <= -1/2
_______________________________
Для случая x > -1 можно переписать неравенство так: |x| >= |x + 1|. Вспоминая геометрический смысл модуля, немедленно получаем, что нам необходимы все такие x, для которых расстояние до точки 0 больше, чем до -1, т.е. все x, которые лежат ближе к -1, чем к 0. Если представить числовую прямую, ответ x <= -1/2 для этого случая становится очевидным.
Надеюсь видно)))
Смотри картинку
Решение задания приложено
Пример 1. Решите уравнение – х + 5,18 = 11,58.
Решение:
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
Ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
Решение:
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
Ответ: – 8.
Пример 3. Решите уравнение .
Решение:
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
Ответ: 3.
Пример 4. Решите систему
Решение:
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
Ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде координаты точки.
Квадратные уравнения
Квадратные уравнения ax2 + bx + c = 0, где а ≠ 0.
D = b2 – 4ac;
;
нет решения при D < 0.
При решении квадратных уравнений полезно помнить формулу чётного коэффициента, т.е. случай, когда b = 2k или k =b/2:
.
х2 + px + q = 0 – приведённое квадратное уравнение. Для него справедлива теорема Виета: