1)
В случае , когда выражение 3а больше (2а+1) в 2 раза ; или (2а+1) меньше 3а в 2 раза.
3а / (2а + 1 ) = 2
3а = 2(2а + 1)
3а = 4а + 2
3а - 4а = 2
-а = 2
а = - 2
----------------------------------
(3 * (-2) ) / (2 * (-2) + 1) = - 6/(-3) = 2 (раза)
2) В случае , если (2а+1) больше 3а в 2 раза , или 3а меньше (2а+1) в 2 раза.
(2а + 1) / 3а = 2
2а + 1= 2*3а
2а + 1 = 6а
2а - 6а = - 1
- 4а = - 1
4а = 1
а = 1/4
а = 0,25
-------------------------
(2*0,25+1)/(3*0,25) = 1,5/0,75=2 (раза)
Ответ : при а₁ = -2 , а₂= 0,25 выражения 3а и (2а+1) отличаются в 2 раза.
lg(7 - x) + lgx > 1
По свойству суммы логарифмов с одинаковыми основаниями:
lg((7 - x)*x) > 1
1 = lg10
lg((7 - x)*x/10) > 0
Следовательно (7 - x)*x/10 > 0
(7 - x)*x/10) = (x - 5)*(x - 2)
(x - 5)*(x - 2) > 0
Методом интервалов решаем, что x > 2 и x < 5.
Ответ: (2; 5) *Именно с круглыми скобками!*.