<span>Площадь треугольника равна половине произведения высоты на сторону, к которой проведена. </span>
<em>S=a•h:2</em>
•<em>Если высоты двух треугольников равны, то их площади относятся как основания</em>.
<span>Высота ∆ ADC и ∆ ABC общая. </span>
<u>Подробно.</u>
S(ABD):S(ABC)=AD:AC
<span>Точка D по условию делит АС в отношении 1:5. </span>
<span>Примем AD=a, тогда DC=5a. </span>
<span>AC=а+5а=6a </span>
S(ABD):A(ABC)=1/6
S(ABC)=36
S(ABD)=36:6=6 см²
<span>-----------</span>
<span> Площадь треугольника можно найти и по формуле </span>
<em>S=a•b•sinα:2</em>, где a и b стороны треугольника, α - угол между ними.
<span>Угол А общий для ∆ABD и ∆ABC, поэтому </span>
<span>S (ABD):S (ABC)=AB•AD:AB•AC, т.е. получается то же отношение AD:AC, равное для данного треугольника 1/6.</span>
В сечении получаем равнобедренный треугольник АКЕ, у которого АК = АЕ (как медианы равных равносторонних треугольников).
АК = АЕ = 6*cos 30° = 6*(√3/2) = 3√3 см.
Отрезок КЕ как средняя линия треугольника равен 6/2 = 3 см.
Площадь полученного сечения можно определить пр формуле Герона:
S = √(p(p-a)(p-b)(p-c)).
Периметр равен 2*3√3 + 3 = 6√3 + 3 = 3(2√3 + 1) см.
Полупериметр р = Р/2 = 1,5(2√3+ 1) ≈ <span>
6,696152 </span>см.
Подставив полученные результаты в эту формулу, получаем:
S = <span><span>7,462405778 см</span></span>².
16см. пусть АС=х, тогда СВ=32-х, АМ=МС=х/2, СК=КВ=(32-х)/2, тогда МС+СК=х/2+(32-х)/2=х/2+16-х/2=16
для описанного четырехугольника справедливо утверждение
суммы противоположных сторон равны
пусть ABCD - данный описанный четырехугольник
r- радиус вписанной окружности
тогда AB+CD=AC+BD=24
r=5
Площадь четырехугольника (как сумма четырех соответсвенно треугольников) равна
S=1/2*r*(AB+BC+CD+AD)=1/2*5*(24+24)=120
ответ: 120
S = 1/2 * АВ * ВС * sin 120*
<span>S = 1/2 * 3 * 6 * sin (90+30) = 9* cos 30* = 9 *√3/2 =4,5 * √3</span>