<span>Найдем гипотенузу по теореме Пифагора:
гипотенуза = √(20 √41)² +
(25√41)²=√16400+√25625=√42025=205
Найдем площадь прямоугольного треугольника по половине произведения катетов:
S = (20 √41 * 25√41) / 2
Найдем площадь прямоугольного треугольника по </span><span>половине произведения стороны на высоту, проведенную к
ней
</span><span>S = (205 * х) / 2=205х/2=102,5x
где х - высота, проведенная к гипотенузе.
Составим равенство и найдем значение х:
(20 √41 * 25√41) / 2 = </span><span><span>102,5x (умножим на 2, чтобы избавиться от дроби
</span>
(20 √41 * 25√41) = </span><span><span>205х</span>
√400*41*√625*41=205х
√16400*√25625=205х
√420250000=205х
20500=205х
х=20500:205
х=100
Ответ: Высота равна 100.</span>
Тут діє теорема Піфагора: c² = a² + b², де с - гіпотенуза, а і b - катети.
10² = 8² + b² ⇒
b² = √10²-8² = √100-64 = √36
b = 6 см.
Получившийся наименьший треугольник подобен треуг. ABC, коэффицент подобия равен 3. тогда если длину этого меньшего отрезка обозначить m , то AB =3m
AB -m=2m
8 = 2m
m= 4
AB = 12