Аксиома параллельных прямых:
Через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной.
Следствия:
1) Две прямые, параллельные третьей, параллельны между собой.
2) Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
ΔABC - прямоугольный; ∠C = 90°; ∠B = 30°; AB = 10
Катет AC лежит против угла 30° ⇒ равен половине гипотенузы AB:
AC = AB/2 = 10 /2 = 5
Проведена окружность с центром в точке А
а) радиус в точку касания образует с касательной угол 90°.
Радиус равен АС = 5
б) радиус меньше 5
в) радиус больше 5
1) боковая х, их две одинаковых, основание х-2, тогда х+х+х-2=16 3х=18 х=6 это боковые стороны 6-2=4 это основание 2) здесь все стороны равны тогда 21/3= 7 см стороны равностороннего треугольника
АБ=5
АБ=✓((х-2)²+(1-4)²)
✓((х-2)²+9)=5 |^²
(х-2)²+9=25
(х-2)²=25-9
(х-2) ²=16
х-2=±4
х1=4+2
х1=6
х2=-4+2
х2=-2
Ответ: при х=6 или х=-2
Дан правильный тетраэдр МАВС. Все его ребра равны.
АВ=АС=ВС=МА=МВ=МС=√6/2.
Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В. АМ || A₁M₁. Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁
Соединим точки А₁ и С₁, получим треугольник А₁С₁М₁ - нужное нам сечение.
Причем А₁С₁ || AC, так как является средней линией треугольника АВС.
Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4
Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС
ОА=ОС=ОМ=R
Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁
О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников АМС и А₁М₁С₁ с коэффициентом подобия 2.
радиус окружности описанной около равностороннего треугольника можно найти по формуле
при a=√6/2 получаем R=√6/2 ·√3/3=√2/2
Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1
<span>Значит ВО₁=1/2 в силу подобия </span>
и ОО₁=ВО-ВО₁=1/2
<span>Ответ 1/2</span><span />