К=f'(x0)
f'(x)=3x^2--12x^2 Проверьте f(x)=??? Неправильно записано, но решать надо так!
f'(2)=-9*(2^2)=-36; k=-36
Сократим на (х+6) x≠-6
(х+6)^2=36
(x+6)^2=6^2
x+6=6
x=0
1. Находим интервалы возрастания и убывания. Первая производная.
f `(x) = [e^(- 0,5x)] / (x + 1) - [0,5*e^(- 0,5x)] / (x + 1)²
или
f `(x) = (- 0,5x - 1,5)/[(x + 1)² * e^0,5)]
Находим нули функции. Для этого приравниваем производную к нулю
-0.5x - 1.5 = 0
Откуда:
x<span> = - 3</span>
(-∞ ;-3) f'(x) > 0 <span>функция возрастает
</span>(-3; -1) f'(x) < 0 <span>функция убывает
</span>( <span>-1; +∞) <span>f'(x) < 0 </span>функция убывает</span>
В окрестности точки x = - 3 производная функции меняет
знак с (+) на (-). Следовательно, точка x = - 3 - точка максимума.