Т.к. треугольник - тупоугольный, то высота AM перпендикулярна продолжению стороны CB. Угол ABM смежный с углом АВС, значит, угол ABM = 30°. Т.к. против угла в 30° в прямоугольной треугольнике лежит катет, равный половине гипотенузы, а AB - гипотенуза, то AB = 2AM = 2*12 = 24.
По условию:
h = ВС = 9 см
∠А = 60°
Рассмотрим прямоугольный треугольник АВС (∠С=90) :
1) ВС=h= 9 см ; АС=r - катеты
АВ = l - гипотенуза
2) Сумма острых углов прямоугольного треугольника 90°
∠В = 90 - ∠А ⇒ ∠В = 90 - 60 = 30°
Катет, лежащий против угла в 30° равен половине гипотенузы. Следовательно:
АС =¹/₂ * АВ ⇒ АВ = 2АС ⇒ l = 2r
По теореме Пифагора: АВ² = АС² + ВС²
(2r)² = r² + 9²
4r² - r² = 81
3r² = 81
r² = 81/3
r² =27
r=√27
r=√(9*3)
r= 3√3 ⇒ АС = r = 3√3 см
3) Объем конуса :
V= ¹/₃ * πr²h
V = ¹/₃ π (3√3)² * 9 = ¹/₃ * (√27)² * 9*π = ²⁴³/₃ π = 81π (см³)
при π ≈ 3,14 ⇒ V ≈81 * 3.14 ≈ 254.34 (см³)
ВН- высота, медиана и биссектриса, т.к. тр-к равнобедренный; поставим на ВН любую т.М; тр-к АМС - равнобедренный, т.к.МН - его высота, медиана и биссектриса))))
Составим систему из данных уравнений