Площадь сечения - это прямоугольник, у которого одна сторона H - высота цилиндра, другая 2R - диаметр основания цилиндра. Поэтому площадь сечения S = 2RH = 24.
Площадь боковой поверхности Sбок = 2πRH. Подставляем в эту формулу значение 2RH:
Sбок = π*24.
Sбок / π = 24
§11. Подобие фигур → номер 8
1) Проведем биссектрису угла NQ.
2) Отметим на ней точку О, опустим перпендикуляры OF и ОЕ на стороны угла.
3) Построим окружность с центром в точке О и радиусом
ОЕ.
4) Проведем луч NA, который пересекает окружность в точке Т.
5) Проведем прямую АО1, так что АО1 || ТО. Тогда ΔNTO и ΔNAO1 подобны, так что
6) Построим окружность с центром в точке 01 и радиусом О1А1.
Докажем, что эта окружность искомая, то есть А01 = = 01М = 01Р, где 01Ми 01Р — перпендикуляры из точки 01 на стороны угла.
D=2R, где d - диаметр, R - радиус.
1. sin α = √(1-cos²α) = √(1- 4\9) = √(5\9)= √5\ 3
tg α = sin α \ cos α = √5\3 : (-2\3) = -√5\2
ctg α = 1 \ tg α = 1 \ (-√5\2) = -2\ √5 = -2√5 \ 5
2. cos α = √(1-sin²α) = √(1-1\16) = √(15\16) = √15\ 4
tg α = 1\4 : √15\4 = 1\√15 = √15\ 15
ctg α = 1 \ 1\√15 = √15