1. Чертим основание АВ, равное а.
2. Стандартным способом находим середину М отрезка АВ.
3. Радиусом, равным АМ, как на диаметре чертим окружность с центром в точке М на отрезке АВ.
3. Из А, как из центра, чертим полуокружность радиусом, равным данной высоте h, чтобы она пересекла окружность (М) в точке 1.
4. Из С. как из центра, радиусом, равным h, находим вторую точку пересечения боковой стороны с окружностью (М) в точке 2.
5.Через точки 2 и 1 проводим из А и С прямые до их пересечения в точке В, третьей вершине треугольника АВС.
Углы при точках 1 и 2 - вписанные, опираются на диаметр и равны 90º
Равнобедренный треугольник АВС с основанием АВ=а и высотой, равной h, построен.
60 градусов это (п/3) радиан. Как это нашли? По пропорции: полная окружность 360 градусов или (2п) радиан. Поэтому:
60/360 = x/(2п), отсюда
x = (60/360)*2п = (1/6)*2п = п/3.
Теперь радианная мера угла - это отношение длины дуги окружности (центрального угла) к длине радиуса, т.е.
(п/3) = L/R, отсюда
L = (п/3)*R = (п/3)*30 см = 10*п (см).
<span><em>В прямоугольном треугольнике АВС гипотенуза АВ равна 13, радиус вписанной в него окружности равен 2. <u>Найти площадь треугольника</u>. </em></span>
------
Стороны треугольника - касательные к окружности. Пусть точки касания на АС-К, на АВ-М и на ВС-Н.
По свойству отрезков касательных, проведенных из одной точки, АК=АМ, ВН=ВМ и КС=НС, эти два отрезка равны радиусу=2
Пусть ВН=х.
Тогда ВМ=х, АК=АМ=13-х.
АС=АК+КС=13-х+2=15-х
ВС=ВН+СН=х+2
По т..Пифагора
АВ²=АС²+ВС²
169=(15-х)²+(х+2)²⇒
2х²-26х+60=0
Решив квадратное уравнение, получим два корня:
х₁=10, х₂=3 ( оба подходят)
АС=5, ВС=12
<span>S=5•12:2=30 (ед. площади)</span>
Средняч линия равна полусумме оснований трапеции, поэтому составим уравнение:
20+BC/2=12
20+BC=24
BC=24-20
BC=4
Ответ: 4
Площадь любого описанного многоугольника около окружности можно найти по формуле:
S = 1/2Pr, отсюда P = 2S/r
P = 2•18/5 = 36/5 = 7,2.