1.1
2.1
3.3
4.2
(это тест №9, всё под буквой А)
на чертеже треугольник abc. важно то что точка о является так называемым центром тяжести и делит медианы в отношении 2:1 начиная с вершины. т.е. ob/oe=2/1 следовательно oe=ob/2=10/2=5. так мы нашли нашу медиану be=oe+ob=10+5=15. рассмотрим треугольник ecb - он прямоугольный т.к. угол с=90 градусов. значит сторона ec вычисляется по теореме пифагора ec^2=be^2-cb^2. ec^2=15^2-12^2=225-144=81. ec=9. В свою очередь ec=ac/2 потому что сам отрезок ec получен изза разбиения медианой стороны ас надвое. т.е. ac=ec*2=18.
В общем-то катеты прямоугольного треугольника abc найдены, осталось по теореме пифагора найти гипотенузу ab. ab^2=ac^2+bc^2=324+144=468. ac=6*sqrt(13).
Сделаем рисунок.
<span>Пусть площадь АВСD=S. </span>
Тогда площадь прямоугольника KFDC=S/2,
площадь ∆ СFD=S/4 ( диагональ CF делит прямоугольник пополам).
В ∆ АОD и ∆ СОD стороны АD=СD, ОD - общая, углы между равными сторонами равны (BD - биссектриса квадрата).
∆ АОD=∆ СОD.
<span>∆ АОF и ∆ DOF равновелики - у них общая высота из О и равные основания АF=DF. </span>
<span>Таким же образом равновелики ∆ DОМ и ∆ СОМ. Тогда площадь ∆ DОF одной трети площади ∆ СFD. Площадь ∆ DOF=(S/4):3=S/12</span>
Т.к. площади ∆ АОF и ∆ DOF равны, площадь ∆ АОF=S/12
<span>Сумма площадей ∆ АОВ и ∆FOD равна </span>
<span>площади ∆ ABD без площади </span>∆ АОF и равна S/2-S/12=5/12
По условию эта сумма S•5/12=65 см²
1/12=65:5=13 см²
<span>Площадь ∆ АОВ=65-13=52 см</span>²