Пусть точка пересечения хорды АВ с диаметром КN (в задании не сходятся обозначения диаметра и рисунок) - это точка Р, проекция точки С на основание - точка С1. Отрезок ОС1 = 4/2 = 2 см.
Тогда в треугольнике АОР катет ОР равен половине гипотенузы АО, то есть угол ОАР равен 30°.
АР = 4*cos 30° = 4*(√3/2) = 2√3 см.
АС1 = √(РС1² + АР²) = √((2+2)²+(2√3)²) = √(16+12) = √28 = 2√7 см.
Высота ОМ конуса равна √(5²-4²) = √(25-16) = √9 = 3 см.
Отрезок СС1 равен половине ОМ и равен (3/2) см.
Сторона АВ = 2АР = 2*(2√3) = 4√3 см.
Стороны АС и ВС равны:
АС = ВС = √(АС1²+СС1²) = √(28+(9/4)) = √((112+9)/4) = √(121/4) = 11/2 = 5,5 см.
Ну, угол с=90 слндовательно угол А+угол В=180-90=90
АС=ВС=5 следовптельно треугольник АВС еще и равнобедренный, а в равнобедренном тоеугольнике углы при основании равны, т.е. угол А=углуВ=90:2=45градусам
тепет ищем гипотенузу по теореме пифагора
АВ^2=АС^2+СВ^2=5^2+5^2=25+25=50
АВ=5 корней из 2
<span><span> <em> Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой</em>.</span><span>
<span> Плоскость треугольника АВС проходит через прямую АВ, параллельную данной плоскости, и пересекает эту плоскость, следовательно, линия пересечения этих плоскостей <em>В1А1</em></span></span></span><em>║</em><span><span><span><em>АВ.</em></span></span><span>
Поэтому <em>в ∆АВС </em>и<em> ∆А1В1С </em></span></span>∠<span><span><em>СВ1А=</em></span></span>∠<span><span><em>СВА</em> как соответственные при пересечении параллельных прямых АВ и А1В1 секущей ВС, </span></span>∠<span><span>С - общий </span></span>⇒ <span><span>эти <em>треугольники подобны</em>.
Из подобия следует отношение:</span>
<em>А1В1:В1С=АВ:ВС</em>
А1В1:10=4:5
5А1В1=40 </span>⇒
<span><span><em>А1В1=8 </em>см</span></span>
Если сказано, что треуг. ACD = треуг. CAE, то по св-ву равенства треугольников — если треуг. равны, то и соответсвующие элементы их равны;
Если сказано, что равны углы, то доказываем равенство треугольников ACD и CAE:
1)AC- общая сторона
2)Угол ACD=уг. CAE(по условию)
3)уг.A=уг.C(по св-ву равнобедренного треугольника)
Выходит, что треугольники равны по стороне и приоежащим углам, а дальше по первому пункту
т.к. пирамида правильная, то в основании лежит правильный треугольник и высота пирамиды проецируется в центр вписанной и описанной окружности.
R=
Высота=
Ответ 3,5.