log300 (120)=log2 120/log2 300=log2 (2^3*3*5)/log2 (2^2*3*5^2)=( log2 2^3+log2 3 +log2 5 )/(log2 2^2 +log2 3 + log2 5^2)=(3+a+log2 5)/(2+a+2*log2 5)=(3+a+(log3 5)/(log3 2))/(2+a+2*(log3 5)/(log3 2))=(3+a+(log3 5)*(log2 3))/(2+a+2*(log3 5)*(log2 3))=(3+a+a*b)/(2+a+2*a*b)
1)6х+7-2х=3
тогда
6х-2х=3-7
4х=-4
х=-1
2)4\х=2\2,5
2х=4*2,5
2х=10
х=10\2
х=5
<span>2cosx(1+ 2sin x)=4sin²x-1
</span><span>2cosx(1+ 2sin x)-(2sinx+1)(2sinx-1)=0
(2sinx+1)(2cosx-2sinx+1)=0
2sinx+1=0⇒sinx=-1/2⇒x=(-1)^n *π/6+πn
</span>2cosx-2sinx+1=0
cosx=cos²x/2-sin²x/2; sinx=2sinx/2cosx/2 ; 1=sin²x/2+cos²x/2
2cos²x/2-2sin²x/2-4sinx/2cosx/2+sin²x/2+cos²x/2=0
sin²x/2+4sinx/2cosx/2-3cos²x/2=0 /cos²x/2≠0
tg²x/x+4tgx/2-3=0
tgx/2=a
a²+4a-3=0
D=16+12=28 √D=2√7
a1=(-4-2√7)/2=-2-√7⇒tgx/2=-2-√7⇒x/2=arctg(-2-√7)+πn⇒x=2arctg(-2-√7)+2πn
a2=(-4+2√7)/2=-2+√7⇒tgx/2=-2+√7⇒x/2=arctg(-2+√7)+πn⇒x=2arctg(-2+√7)+2πn
x=7π/6;11π/6;3π/2+2arctg(-2-√7);2π+2arctg(-2+√7);5π/2+2arctg(-2-√7)∈[3π/2;11π/4]