В равнобедренном треугольнике АВС с углом 120° проведена биссектриса этого угла.
Т.к. треугольник равнобедренный, то биссектриса из угла, противолежащего основанию является и его высотой и медианой ( а этот угол противолежит основанию, т.к. двух тупых углов в треугольнике быть не может).
Два угла при основании равны по (180°-120°):2=30°
Пусть эта биссектриса будет ВН.
Тогда ее основание - точка Н на основании треугольника и
АН=СН.
По условию основание биссектрисы удалено от одной из сторон на расстояние 12 см.
Т.к. треугольник равнобедренный, неважно, какую сторону выберем.
Расстояние от точки до прямой измеряют перпендикуляром.
НК<span>⊥ВС и в треугольнике НКС противолежит углу 30</span>°
<span>Катет, противолежащий углу 30</span>°, равен половине гипотенузы, а гипотенуза вдвое больше этого катета. <span>
Отсюда половина основания АС треугольника равна
АС=2*НК=2*12=24см
АС=2*24=48 см</span>
C2=a2+b2.(по т.Пифагора)из этого следует
b2=с2-а2.
900-289=611
Чтобы найти площадь параллелограмма, применяют разные формулы.
Одна из них - общая для выпуклых четырёхугольников.
<em>Площадь выпуклого четырёхугольника равна половине произведения диагоналей и синуса угла между ними.</em> (Т.е. любого из четырёх углов между ними).
Параллелограмм - <u>выпуклый четырёхугольник</u>.
S=0,5•d1•d2•sinα
sin30°=1/2
<em>S</em>(<em>параллелограмма</em>)=0.5(9•28•1/2)=<em>63</em> (ед. площади)
ЕВ и ЕС - наклонные к плоскости α, ЕА - перпендикуляр к плоскости α, ЕВ=4√5 см, АВ=8 см, ∠ВАС=60°, ВС=7 см.
ЕА=√(ЕВ²-АВ²)=√(80-64)=4 см.
В тр-ке АВС АС=х. По теореме косинусов ВС²=АВ²+ВС²-2АВ·ВС·cos60,
49=64+х²-2·8·х/2,
х²-8х+15=0,
х₁=3, х₂=5.
АС=3 см, АС`=5 cм.
Задача имеет два решение. Такое возможно, ведь в тр-ка ВАС и ВАС` BC=BC`=7 см и тр-ник ВСС` - равнобедренный.
1) В тр-ке ЕАС ЕС=√(ЕА²+АС²)=√(16+9)=5 см.
2) В тр-ке ЕАС` ЕС`=√(EA²+AC`²)=√(16+25)=√41 см.
Ответ: вторая наклонная равна 1) 5см, 2) √41 см.