Схема в общем-то не нужна. Достаточно начертить равносторонний треугольник.
Всего одна формула, остальное рассуждения.
Рассмотрим равносторонний ∆, у которого угол при вершине равен 60°. Углы при основании в равнобедренном ∆ равны. Сумма всех углов ∆ равна 180°. Сумма углов при основании равна 180°-60°=120°. А раз они равны, значит уголы при основании равны по 60°. Раз все углы равны, значит стороны тоже равны. Треугольник у нас равносторонний.
Площадь равностороннего ∆ равна:
S=(a^2•√3)/4=(36√3)/4=9√3
X - такое число, что основание равно 12*x, боковая сторона 10*x;
(Ну, тогда площадь просто равна S = 10*12*x/2; не зависимо от того, как её считать - через основание или боковую сторону. Можно считать это выражение определением неизвестной x)
Высота к основанию 10 делит треугольник на два равных прямоугольных, у каждого из них катеты 6*x и 10, гипотенуза 10*x;
Отсюда 10 = 8*x; (ну, сосчитайте по теореме Пифагора, хотя тут проще всё - треугольники получились "египетские", то есть подобные треугольнику со сторонами 3,4,5, коэффициент подобия 2*x)
x = 5/4; основание 12*x = 15; боковые стороны 10*x = 25/2;
полупериметр p = 25/2 + 15/2 = 20; площадь S = 15*10/2 = 75;
r = S/p = 15/4;
Самое занятное, что здесь вообще не надо ничего этого делать.
ПО ОПРЕДЕЛЕНИЮ числа x
S = 60*x; и p = 16*x; откуда r = S/p = 60/16 = 15/4; :))
Нет не будет по томучто оба диагонали должны делить по полам
S1=πR² площадь первой окружности
S2=πr² площадь второй окружности
S1\S2=9\16
πR²\πr²=9\16
R²\r²=9\16
R\r=√(9\16)=3\4
R\r=3\4
<span>Задача по теме об отрезках касательных из одной точки. </span>
<span><em><u>Отрезки касательных</u>, проведенных к окружности и<u>з одной точки</u>, от общей точки до точек касания <u>равны друг другу</u></em><u>. </u></span>
<u />
<span>Примем <em>ТN</em>=<em>x.</em> </span>
<span>Тогда NS=TN=x, </span>
SQ=QN-SN=10-x
QR=QS=10-x
<span>MR=MQ-QR=24-(10-x) </span>
<span>MT=MR=24-(10-x)=<em>14+x </em></span>
<span> МN=MT+TN =></span>
20=14+x+х
2х=6
<em>х</em>=<em>3</em> =>
<span><em>TN</em>=<em>3</em> (ед. длины)</span>