Обозначим стороны, прилегающие к углу в 60 градусов, за х и (х+3).
Применим теорему косинусов:
7² = х²+(х+3)²-2*х*(х+3)*cos 60°,
49 = x²+x²+6x+9-2*(x²+3x)*(1/2),
49 = 2x² +6x+9 -x²-3x.
Получили квадратное уравнение:
х²+3х-40 = 0.
Квадратное уравнение, решаем относительно x: <span>Ищем дискриминант:</span>
D=3^2-4*1*(-40)=9-4*(-40)=9-(-4*40)=9-(-160)=9+160=169;<span>Дискриминант больше 0, уравнение имеет 2 корня:</span>
x₁=(√169-3)/(2*1)=(13-3)/2=10/2=5;x₂=(-√169-3)/(2*1)=(-13-3)/2=-16/2=-8 (отрицательный корень отбрасываем).
Стороны равны 5 и (5+3=8) см.
Ответ: периметр равен 7+5+8 = 20 см.
Радиус окружности OM перпендикулярен к касательной NM.
ΔNOM - прямоугольный, ∠OMN = 90°. По теореме Пифагора
NO² = OM² + NM² = 20² + 21² = 841
NO = 29.
NK = NO - KO = 29 - 20 = 9
1)По теореме Пифагора найдем гипотенузу АС^2=36+64=100
АС=10
2)у прямоугольного треугольника 2 острых угла,пусть угол В=90,найдем sin,cоs,tg углов А и С. sin-это отношение противолежащего катета к гипотенузе,т.е sin A=вс/ас
sin A=6/10=3/5
sin С=АВ/Ас
sin C=8/10=4/5
3)cos-отношение прилежащего катета к гипотенузе,т.е cos A=aв/ас
cos A=8/10=4/5
cos С=Bc/Ас
cos C=6/10=3/5
4)tg-отношение синуса к косинусу,т.е tg A=sinA/cos A
tgA=3/5 / 4/5=3/4
tg C=sinC/cosC
tgC=4/5 / 3/5 =4/3