Пусть точка вне плоскости М.
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Значит НВ = АВ:2 = 6см
Получился прямоугольный треугольник МВН: гипотенуза МВ = 10см,
катет НВ = 6см и катет МН, который нужно найти.
Теорема Пифагора
МН² = МВ² - НВ² = 100 - 36 = 64 = 8²
Ответ: расстояние от точки до плоскости 8 см
Расскроем скобки
3х-6у-х-1.5у-4.5х=-2.5х-7.5у
(ac-cd)*cd/ad*(a^2-ad)=ac^2d-c^2d^2/a^3d*a^2d^2