Ответ:
0,5
Объяснение:
Модуль в решении нужен для того , чтобы не доказывать
неравенство BN > BK, независимо от длин этих отрезков
расстояние между точками касания равно модулю их
разности , то , что из " чертежа видно "
доказательством не является
1) Четырехугольник МОКС:
∠МОК=∠АОВ=120°
∠М=∠К=90°,
значит ∠С=60°.( сумма всех углов четырехугольника 360°).
По формуле
S(Δ)=(1/2)·b·c·sinα
находим
S( ΔABC)=(1/2)· AC·BC·sin ∠C=10√3,
2) Из прямоугольного треугольника АСК по теореме Пифагора
АК²=20²-12²=256
АК=16
Если провести вторую высоту из точки В, то получим два равных между собой треугольника ( трапеция равнобедренная по условию) и прямоугольник.
Пусть КD=x, тогда верхнее основание ВС=16-х, нижнее основание AD=16+x
S( трапеции)=(BC+AD)·CK/2=(16-x+16+x)·12/2=32·12/2=16·12=192.
3)∠M=∠Q =60°( трапеция равнобедренная MN=PQ).
ΔMNK - равнобедренный (MN=NK=MQ/2)
Значит ∠MKN=60°, а так как сумма углов треугольника 180°, то и
∠MNK=60°.
Треугольник MNK- равносторонний.
∠KNP=120°-∠MNK=120°-60°=60°
В треугольнике NPK
NP=MK=NK, значит это равнобедренный треугольник с углом 60° при вершине, что означает, треугольник равносторонний.
ΔMNK=ΔKNP.
Все стороны этого треугольника равны между собой.
КР=NK=NP.
NP=KQ
Треугольники КPQ и КNP также равны между собой.
Все три треугольника равны между собой
S( трапеции)=3·5=15
Ответ получается 12 . Это BC. геометрия не такая тяжелая для тебя
Я думаю, в условии ошибка, трапеция не может быть равносторонней. Вероятно, читать задачу надо так: <span>Боковая сторона равнобедренной трапеции равна десять корней из двух и образует с основанием угол 45 градусов. Найти площадь трапеции если в неё можно вписать окружность.
</span>Решение:
Опустим ВК⊥АD, ∠А=∠АВК=45°⇒ВК=АК
АВ²=2ВК²⇒ВК=√АВ²/2=10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равны.⇒
АВ+CD=BC+AD=2*10√2=20√2
S=BK*(BC+AD)/2 =10*(20√2)/2=100√2.