смежный угол равен сумме несмежных углов (А+В). В треугольнике АОВ угол ВАО+АВО=80 (180-100=80). Это половины углов А и В, значит их сумма равна 160град. Внешний угол при вершине С 160град
Делаешь чертеж, получается, что мо = 14 и о - точка пересечения диагоналей квадрата, мо перпендикулярно плоскости.( по условию м равноудалена от сторон, значит находится по центру) при этом, из м проводишь перпендикуляры к серединам сторон квадрата, которые равны 50. получаешь прямоугольный треугольник с гипотенузой 50 и катетом 14. соответственно другой катет по т. пифагора = 48. этот катет - половина стороны квадрата, т.к. если его продлить, то он пересечет др. соорону в точке, так же делящей сторону пополам. значит, прямая параллельна сторонам, а точка о делит ее пополам. следовательно, сторона квадрата = 48*2 = 96 сторона 96, тогда диагональ = корень из (2*96*96) = 96*корень из 2. расстояние от вершины до м = гипотенузе в треугольнике с катетами мо и тем, что равен половине диагонали (жиагональ до точки о), половина диагонали = 48*кор(2) таким образом, искомое расстояние = корень из (14*14+2*48*48)=кор(4804)<span> ответ: сторона 96, расстояние кор(4804)</span>
Дан треугольник АВС.
В нём высота и медиана ВД., т.к. ВД одновременно и медиана, и высота, то треугольник АВС- равнобедренный.
АС-основание, АД=ДС=18:2=9 см; АВ=ВС.
треугольник АВД прямоугольный, в котором ∠АДВ=90°.
По теореме Пифагора АВ=√АД²+ВД²=√81+144=√225=15 см
и ВС=15 см
радиус вписанной в равнобедренный Δ окружности равен:
r=√p(p-a)(p-b)(p-b)/p=√24(24-18)(24-15)(24-15)/24=√24*6*9*9/24=9*√144/24
=4,5 cм
ответ: 4,5 см
<em>В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
</em>Трапеция - <u>четырехугольник</u>, и вписать в нее окружность можно, если сумма боковых сторон равна сумме оснований.
Средняя линия трапеции равна полусумме оснований. Сумма оснований равна 2*12 = 24 см. ⇒
Сумма боковых сторон равна 24 см.
Так как данная трапеция равнобедренная, то каждая её боковая сторона равна 12 см.
боковое ребро легко найти по теореме пифагора так как оно- прямоуг-й треугольник