Ответ:
8√3 см²
Объяснение:
От концов меньшего основания опустим перпендикуляры на нижнее основание. Образуются два равных прямоугольных треугольника с острыми углами 60° и 30°.Нижнее основание этитми перпендикулярами поделит на равные отрезки 6/3=2 см Катет в прямоугольном треугольнике будет равен 2 см, он лежит против угла в 30°. Значит гипотенуза будет в 2 раза больше. Гипотенузой будет боковая сторона трапеции и равна она будет 4 см. Высота трапеции вычисляется по теореме Пифагора h²=4²-2²=16-4=12; h=√12=2√3.
Можно вычислить теперь площадь трапеции
S=(2+6)/2·2√3=8√3
Пусть a, b - катеты, с - гипотенуза, h - высота, опущенная на гипотенузу
a = 5 cм
b = 3 см
а)
По теореме Пифагора:
б)
cм²
в)
∠DCA и ∠ ACВ-смежные(их сумма равна 180°)⇒
⇒∠АСВ=180°-50°=130°
Сумма углов треугольника равна 180°⇒∠ВАС+∠АСВ+∠СВА=180°⇒
⇒130+25+∠САВ=180°⇒∠САВ=180-130-25⇒∠САВ=25°