Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3
Рассмотрим ∆ AED (угол DAE = 90°):
tg AED = AD / AE = 4 / 3√3 = 4√3 / 9
ОТВЕТ: 4√3 / 9
Ответ:
Р≈31,11 см
Объяснение:
P-?
a=4x
b=7x
d1²+d2²=(a*2)²+(b*2)²
14²+18²=(4x*2)²+(7x*2)²
x=√2
a=4√2
b=7√2
P=2*(a+b)=2*(4√2+7√2)=22√2≈31,11 см
5) из подобия треуг следует что их площади относятся как к^2; к=2/5, тогда к^2=4/25 S2=25S1/4=50
6)2,5/10=4/16=20/5=1/4=>тругольники подобны по 3 сторонам
ВС И DF являются сходственными
7)из подобия следует, что EF/BC=AC/DF => AC=EF*DF/BC=14*20/21=40/3
8)уголBMN=BAC(как соответственные при паралл прямых)
В-общий угол
УголС=углуN(как су при паралл прямых)
Тогда треугольник BMN~BAC
Sbmn:Sbac=k^2=25:49
k=5:7
MN/AC=5/7 AC=MN7/5=28
1)угол В общий
Ав/вд=вс/ав=2/1 тогда треугольники подобны по углу и двум сторонам
2)тк треугольники подобны, то СД/АВ=АД/АС=АС/ВС АД=АС*АС/ВС=144/9=16
3)уголВКС=АКД(как вертикальные) уголВ=Д(как НЛУ) уголС=А(как НЛУ)
Тогда треугольники подобны по 3 углам
Вк/кд=вс/ад вк=вс*кд/ад=26*21/39=14
4)уголF=C=90
A общий уголЕ=углуВ(тк сумма углов тругольника 180) значит треугольники подобны по трем углам
Вс/fe=ab/ae
Ab=ae*bc/fe=20
1- углы равнобедренного треугольника будут равны по 45 градусов
2- 60 градусов
Вс половине будет равно АД/2, т.е 30/2= 15