ΔОМD. МD=2 см; ∠МDО=60°; ∠ОМD=30°; ОD=0,5МD=1 см.
ОМ²=МD²-ОD²=4-1=3; ОМ=√3 см.
ΔВМD. ВD=ОВ+ОD=1+1=2 см.
АВСD - квадрат, сторона которого равна √2 см;
площадь равна S=√2²=2 см².
V=(2·√3)/3=2√3 /3 см³.
Если провести прямую параллельную к одной из диагонали то получим прямоугольный треугольник, у которой гипотенуза будет равна сумме оснований трапеций . Так как трапеция равнобедренная то , диагонали равны, пусть они равны d, тогда гипотенуза она же сумма оснований будет равна d√2. Тогда высоту можно выразить как d^2/d√2 = 16 , d=16√2
тогда гипотенуза будет равна √2*(16√2)^2 = √2*256*2 =32. Тогда площадь будет равна S=(32/2)*16=256
<span> 2)Если не хотите мучатся , все это понимать, есть такая теорема что высота будет равна средней линий этой трапеций ( лишь в случае равнобедренности и перпендикулярности диагоналей) то есть m=h (m средняя линия треугольника) тогда средняя линия треугольника будет равна полусумме оснований то есть сумма оснований будет равна 16*2=32, и того S=32*16/2=256</span>